Институт морской геологии и геофизики Дальневосточного отделения Российской академии наук. Сведения о важнейших научных достижениях, полученных в 2017 г., и основных результатах законченных работ (или крупных этапов работ) Института, полученные в 2017 г. Рисунки и подрисуночные подписи.

> МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И ЖИЛИЩНО-КОММУНАЛЬНОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

СВОД ПРАВИЛ

СП252.1325800.2017

ЗДАНИЯ И СООРУЖЕНИЯ В ЦУНАМИОПАСНЫХ РАЙОНАХ. Правила проектирования

Издание официальное

РОССТАНЛАРТ ФТУП «СТАН ДАРТИНФОРМ» ФЕДЕРАЛЬНЫЙ ИНФЭРМАЦІЗЧНЫЙ ФОНД СТАНДАРТОВ henrenopayny of Norgema 2017 r. Москва

B HAGOP

Рис.1 Скан-копия обложки издания

Рис.2 Графики вариаций во времени кумулятивной суммы числа толчков (N) изучаемых последовательностей событий, предваряющих сильные землетрясения: а – Костромское 30 мая 2004 г. (М=4.8); б – Монеронское 18 декабря 2004 г. (М=4.7); в – Невельское 2 августа 2007 г. (Мw=6.2); г – Горнозаводское 17 августа 2006 г. (Мw=5.6). Ступенчатые кривые – исходные зависимости, гладкие кривые – результат моделирования. Дата землетрясения показана пунктирной линией.

Рис. 3. Распределение абсолютных максимальных значений термальных аномалий (T°C) во времени (с 2013 по 2015 гг.). При построении графика использованы данные информационного сервиса «Дистанционный мониторинг активности вулканов Камчатки и Курильских островов» (VolSatView).

Рис.4. Когерентность и фаза между двумя рядами колебаний уровня моря, полученными для станций № 32 - № 68. Доверительный интервал для фазы когерентности составляют ±14°, для когерентности 0,6. Доверительный интервал для когерентности равен 0.4 для вероятности 95%.

Рис. 5. Вариации химического состава вод из грифонов Южно-Сахалинского грязевого вулкана в мае-сентябре 2015 г.: 1-5 – опробованные грифоны; 6 – суммарное количество выпавших осадков за двое суток до отбора проб.

Рис. 6. Расположение Полярнинского нефтяного и Анивского газового месторождений (*a*) и основных разломов на территории о. Сахалин: *б* – субширотный геологический разрез Полярнинского месторожнения, проходящий вблизи скважин 4-П, 6-П и 7-П; *в* – субмеридиональный разрез вблизи скважин ЮЛ-14, Петр-1 Анивского месторождения; г – зависимость от глубин отношения максимального горизонтального и вертикального напряжения для Полярнинского месторождения; д – та же зависимость для Анивского месторождения.

Рисунок. 7. Спектр среднемесячных значений относительной величины угловой скорости вращения Земли в двойном логарифмическом масштабе. Линии со стрелками указывают представительные пики спектра. По горизонтальной оси отложено количество циклов в год

Рис.8. Схема новейшей геодинамики о. Сахалин

А. Неотектонические структуры и оси главных нормальных напряжений. 1-3 – Неотектонические структуры: 1 – разломы, выделенные по геоморфологическим данным; 2 - границы структур 1 порядка; 3 – границы поднятий и впадин. Цифрами обозначены поднятия: I - Шмитовское; II – Западно-Сахалинское, III- Восточно-Сахалинское, V – Сусунайское; впадины: VI – Центрально-Сахалинская. 4 - Северный и Центральный Сахалин - оси сжатия в горизонтальной плоскости, восстановленные структурно-геоморфологическим (СГ) методом, сопровождаемые: а – трехосным напряженным состоянием, б – обстановкой дополнительного растяжения, в – обстановкой дополнительного сжатия. 5 – Южный Сахалин - оси алгебраически минимальных (а) и максимальных (б) сжимающих напряжений общего поля напряжений, восстановленных по банку данных о локальных стресс-состояниях (ЛСС).

Б – Схема районирования областей с разной геодинамической обстановкой. 6-8 – Оси сжатия, восстановленные СГ методом в разных геодинамических обстановках: 6 – дополнительного растяжения, 7 – трехосного напряженного состояния, 8 - дополнительного сжатия; 9 – сдвиги; 10 – оси главных нормальных напряжений, восстановленные методом нахождения общих полей напряжений по данным о ЛСС: а – растяжения, б – сжатия; 11 – траектории субгоризонтальных осей сжатия. 12 - Границы областей с разной геодинамической обстановкой. А – Области с обстановкой дополнительного растяжения: A_1 – Северная, A_2 – Поясок; Б – с обстановкой дополнительного растяжения (Іа – Северная, Іб – Поясок), Б – трехосного напряженного состояния (Б₁ – Западная, Б₂ – Южно-Сахалинская), В – дополнительного сжатия (Центрально-Сахалинская). Крупнейшие разломы (цифры в 1- Центрально-Сахалинский, 2 – Хоккайдо-Сахалинский, 3 – кружках): Верхнепильтунский, 4 – Набильский.

Рис. 9. Положение валовых составов дацитов, стекол расплавных включений и основной массы на классификационных диаграммах кислых пород в сравнении с составами кислых пород зон субдукции Курильских островов и других регионов мира.

Рис. 10. Карта распространения видов *Rinodina* в северо-восточной Азии. А, *R. freyi*; В, *R. hypobadia* (новый вид для науки); С, *R. megistospora* (кружки), *R. metaboliza* (треугольники), *R. moziana* (квадраты); D, *R. oleae* (кружки), *R. polyspora* (треугольники), *R. sicula* (квадраты); Е, *R. orientalis* (новый вид для науки); F, *R. septentrionalis*.

Рис. 11. Модель взаимодействия Североамериканской (NAM), Тихоокеанской (PAC) и Беринговоморской (BER) литосферных плит. А) Скорости GPS пунктов северо-западной части Тихоокеанского региона относительно Североамериканской литосферной плиты. Б) Измеренные (желтые) и модельные (синие) скорости GPS пунктов с выделенным Командорским (KOM) блоком. Белой стрелкой показана величина и направление схождения Тихоокеанской (PAC) и Североамериканской (NAM) литосферных плит.

Рис. 12. Доверительные 68% диапазоны изменения параметров GEV распределения для зон субдукции (SUBD), внутриконтинентальной коллизии (CONT) и зон срединно-океанических хребтов (RIDGES).

Рис. 13. Значения азимутов падения и скоростей субдукции для различных субдукционных зон. Видна неравномерность распределения, объясняемая вращением Земли.

Рис. 14. Типизация разломов по типам графиков повторяемости землетрясений.

а - разломы первого типа (есть характеристические землетрясения, нет загиба) со значениями $Mmax \ge 8.0$ классифицируются как наиболее сейсмоопасные; б - разломы с развитием характеристических событий и с загибом графика повторяемости, с характерными значениями Mmax = 7.5-7.9 трактуются как весьма опасные; в - разломы третьего типа с Mmax = 7.1-7.5 трактуются как потенциально опасные; г - разломы с загибом вниз графика повторяемости, без характеристических землетрясений, с типичной магнитудой $Mmax \le 7.0$, классифицируются как мало опасные.

Рис. 15. Распределение землетрясений по глубине на расстоянии до 100 км от оси желоба для прямолинейного участка Алеутской зоны субдукции (180°E-160 °W).

По горизонтальной и вертикальной оси расстояния отложены в км. За 0 км принята ось желоба. Серыми отрезками даны проекции оси растяжения на плоскости профиля.

Рис. 16. Скорости GPS/ГЛОНАСС пунктов Курильской геодинамической сети и сопредельных районов.

Светлыми стрелками изображены межсейсмические скорости станций Курильской геодинамической сети за период 2007-2015 гг. Темными стрелками показаны смещения станций за период 06.2014-06.2015 гг. Среднеквадратические ошибки определения скоростей не превышают 2 мм. Решение геометрии сцепления литосферных плит представлено в виде ширины наклонной зоны контакта, аппроксимированной сплайном. В центральной части островной дуги показаны механизмы очагов Симуширских землетрясений.

Рис. 17. Карта южной части Дальневосточного региона России. Показаны эпицентры землетрясений 2012-2013 гг., для которых определен тензор сейсмического момента с использованием ISOLA. 1 – магнитуда землетрясений; 2 – глубина центроида; 3 – широкополосные сейсмостанции, записи которых использовались для расчетов; 4 – граница зоны ответственности СФ ФИЦ ЕГС РАН.

Рис. 18. Распределение скоростных аномалий (продольная волна) на различных глубинах для южной части о. Сахалин.

Рис. 19. (а) Относительное безразмерное измерение угловой скорости вращения Земли (v) за период 1999-2016 гг. (b) Средние компоненты v (Vм), содержащие только годовые и полугодовые гармоники v. Вертикальные оси в масштабе $\times 10^8$.

Рис. 20. Наблюдательная GPS сеть, разломы и положение землетрясения 2004 г. (М=6, Калифорния) и сильных афтершоков.

Рис. 21. Результаты расчета LURR в расчетных зонах № 1–6, карта северной части о-ва Сахалин с эпицентрами землетрясений в период с 1988 по 2005 г.

Рис. 22. Векторные диаграммы наклона: а – наблюденные водотрубным наклономером на обсерватории Икуно, б – по нивелирной сети о-ва Шикотан. Ось X ортогональна простиранию Японского (а) и Курильского (б) глубоководных желобов.

Рис. 23. Энергетика сейсмичности и крипа в недрах южного и среднего Сахалина в координатах «географическая широта – время». Эпицентры землетрясений, приуроченные к Центрально-Сахалинскому (1) и Западно-Сахалинскому (2) глубинным разломам, 3 – энергетическая шкала крипа, 4 – эксплозии грязевых вулканов: Пугачевского (1934 г.), Южно-Сахалинского (1959 г.). Наклонные линии – деформационные фронты.

Рис. 24. Сопоставительный анализ для периодов 1720–1890 и 1895–2016 гг. а – значение низкочастотной составляющей угловой скорости Vn; б – приращение Vn; в – распределение плотности сильных землетрясений (М ≥ 7.5) по 5-летним интервалам, вертикальная ось – количество землетрясений в каждом интервале. По горизонтальным осям – верхние границы 5-летних интервалов.

Рис. 25. Полные смещения, возникающие в вертикальной плоскости, проходящей через зону разлома на десятом году эксплуатации месторождения.

Рис. 26. Области прогноза и сильные землетрясения в Новой Зеландии за 2003-2011 гг.

Рис. 27. Эксперимент на образце мрамора, скорость нагружения 2.3 МПа/час: а, в) графики изменения 3-х компонент деформации, б, г) активности АЭ: максимальные значения 1 – 134 с⁻¹, 2 – 58 с⁻¹, 3 – 149 с⁻¹. Периоды ЭМВ обозначены серыми линиями снизу и серой заливкой. Р – начальная нагрузка.

Рис. 28. Книга Геофлюидогеодинамика. Приложение к сейсмологии, тектонике, процессам рудо- и нефтегенеза.

Рис. 29. Хронология извержений вулканов Курильских островов в XXI в. и их географическое положение. Условные обозначение: 1 - действующие вулканы, 2 - действующие вулканы, проявляющие активность в XXI в., 3 - вулканические извержения, 4 - усиление парогазовой активности (активизация).

Рис. 30. Схема термопроявлений и месторождений термоминеральных вод о. Сахалин (а) и фото долины р. Агнево с выходами гидротерм (б). Цифрами на схеме показаны группы термальных источников: І – Паромайские; ІІ – Дагинские; ІІІ – Лунские; IV – Агневские; V – Лесогорские; VI – Амурские; VII – Приточные.

Рис. 31. Факторные диаграммы для разграничения океанских и континентальных изверженных пород (а) и определения геодинамических обстановок формирования океанских (б) и континентальных (в) базальтов.

Условные обозначения (а): 1-5 – изверженные породы океанские: 1 – нижнесреднемиоценовые, 2 – верхнемиоценовые-нижнеплиоценовые, 3 – плиоценовые, 4 – плейстоценовые, 5 – голоценовые; 6-11 – континентальные: 6 - нижне-среднемиоценовые, 7 - верхнемиоценовые-нижнеплиоценовые, 8 – плиоценовые; 9-11 – плейстоценовые: 9 -ксенолиты цоколя вулкана Тятя, 10 платоэффузивы, 11 – вулкана Руруй; 12 – голоценовые вулканов Тятя, Менделеева, Головнина; 13-14 – океанские и континентальные: 13 – диориты, 14 – граниты; буквами на этой факторной диаграмме обозначены: *dd'* – дискриминантная линия, отделяющая составы океанских и континентальных изверженных пород, k, t – факторы для разграничения океанских и континентальных пород, I-III – средние составы океанских базальтов: I – срединно-океанских хребтов, II – океанских островов, III – щелочных оливиновых базальтов; буквами на дискриминантной диаграмме (б) обозначены: D1(x), D2(x) – факторы для разграничения океанских спрединговых (MORB), внутриплитных (WPB), островодужных и окраинно-морских (IAB) базальтов; буквами на дискриминантной диаграмме (в) обозначены: Dx, Dy – факторы для разграничения островодужных (I), трапповых (II) и континентальных рифтовых (III) базальтов.

Рис. 32. TAS-диаграмма химической классификации (а) и факторные диаграммы для разграничения и определения геодинамических обстановок формирования изверженных пород (б-г).

Условные обозначения: 1-5 – изверженные породы: 1-2 – маруямской свиты: 1 – океанские, 2 – континентальные; 3 –орловской толщи континентальные; 4-5 – ичарского комплекса: 4 – океанские, 5 – континентальные. а – TASхимической класификации. А-Г серии диаграмма _ пород: Α низкощелочные: 2 -дациты; Б - нормально-щелочные: 7 - базальты, 8 андезибазальты, 9 – андезиты, 10 – дациты; Г – щелочные; Д-3 – изверженные породы состава: Д – ультраосновного, Е – основного, Ж – среднего, 3 – кислого; б – факторная диаграмма для разграничения океанских и континентальных пород: dd' – дискриминантная линия, отделяющая составы изверженных пород океана и континента, I-III – средние составы океанских базальтов: I – толеиты срединно-океанских хребтов, II – толеиты океанских островов, III – щелочные оливиновые базальты [7]; в, г – факторные диаграммы для определения геодинамических обстановок формирования базальтов: в – океанских: МОРВ – спрединговые, WPB – внутриплитные, IAB _ островодужные И окраинно-морские; Г континентальных: I – островодужные, II – трапповые, III – континентальные рифтовые.

Рис. 33. Батиметрическая схема вулканического озера Кольцевое (изобаты проведены через 60 м, положение профилей отмечено пунктиром).

Рис. 34. Карты: (а) изопахит -линий равной толщины слоя в см и (б) изоплет линий равного максимального размера частиц в мм для отложений тефры мааров и конуса Отважный извержения 1973 г. Максимальный размер частиц определялся как среднее значение максимальных размеров 10 самых крупных частиц, найденных в разрезе слоя тефры. На врезках показано положение вулкана Тятя в Курильской дуге, положение изученного участка о. Кунашир и направление осей пеплопадов извержения 1973 г.

Рис.35. Фациальная карта центральной части Старозаводского сольфатарного поля. І – осоковые фации: 12 – редкий покров осок и шикши, 18 – осоковая на гидротермально-измененных породах, 21 – осоково-разнотравная на каменистом субстрате; ІІ – разнотравные фации: 2 – разнотравно-злаковая, 3 – разнотравно-злаковая склоновая, 11 – разнотравная, 24 – разнотравно-злаковая прирусловая, 25 – разнотравно-злаковая на гидротермально-

измененных породах; III – багульниковые фации: 15 – заросли багульника, 16 – багульниково-злаковая, 17 – багульниково-злаково-разнотравная, 19 – заросли багульника на гидротермально-измененных породах, 20 – багульнико-осоково-шикшиевая на гидротермально-измененных породах; IV - бамбучниковые фации: 8 - заросли сазы; V - злаковые фации: 1 - злаковоразнотравная, 4 – злаково-разнотравная с единичными особями древесной растительности, 5 – злаковая на каменистом субстрате, 9 – злаковоразнотравно-бамбучниковая, 10 – злаковая, 13 – злаковая с единичными особями древесной растительности, 22 – злаковая на гидротермальноизмененных породах; VI – угнетенные фации: 14 – участок, лишенный растительности (проективное покрытие менее 5 %), 23 – моховолишайниковая на гидротермально-измененных породах; VII – ситниковые фации: 6 – ситниковая, 7 – ситниково-злаковая (кочкарники)

Рис. 36. Схема района работ (использована топографическая основа SRTM (http://photojournal.jpl.nasa.gov/catalog/PIA03374). Треугольниками отмечены действующие и потенциально активные вулканы Камчатки.

Рис. 37. Пространственное распределение изотопного состава вод грязевых вулканов. В числителе указаны диапазоны колебаний значений δD и $\delta^{18}O$, в знаменателе – средние значения, в скобках – количество проб.

Рис. 38. Калибровочная линия для бромид-иона при анализе водных растворов методом ионной хроматографии: 1 — линия для образцов, приготовленных с использованием чистой (деионизованной) воды; 2 — линия для образцов, приготовленных с использованием модельного раствора, имитирующего матрицу грязевулканических вод.

Рис. 39. Эволюция изотопного состава вод Южно-Сахалинского грязевого вулкана: I, II, III – морские, грязевулканические и метеорные воды соотвественно; 1а – смешение погребенных морских и поверхностных вод на стадии континентального развития донных осадков; 1б – смешение погребенных морских и дегидратационных вод; 2 – изотопный обмен по кислороду-18 с водовмещающими породами; 3 – разбавление метеорными водами на современном этапе деятельности вулкана.

Рис. 40. Тип напряженного состояния, характеризующий геодинамический режим района исследований для разных временных интервалов: а) 06.01.1976–31.12.1992 гг.; б) 06.01.1976–31.12.1994 гг.; в) 06.01.1976–31.12.1996 гг.; г) 06.01.1976–17.11.2002 гг., д) 06.01.1976–05.07.2008 гг.; е) 06.01.1976–14.08.2012 гг.; ж) 06.01.1976–24.05.2013 гг.; з) 06.01.1976–1.10.2016 гг.: 1 – растяжение; 2 – сдвиг; 4 – сжатие-сдвиг; 5 – сжатие; 6 – вертикальный сдвиг.

Рис. 41. Развитие фронта разрушения и амплитуды смещения вдоль очаговой плоскости Нефтегорского землетрясения 27(28).05.1995 г. Звездочка – начало вспарывания очага; стрелками показаны направления подвижек, цветовая шкала отражает величину подвижки.

Рис. 42. Тип напряженного состояния, характеризующий геодинамический режим района исследований. 1 – растяжение, 2 – растяжение-сдвиг, 3 – сжатие, 4 – сдвиг в вертикальной плоскости.

Рис.43. Максимальная волна Чилийского цунами 27.02.2010 г. в Северо-Курильске пришлась на момент отлива. На прилив пришлись первые слабые волны.

Рис.44. Максимум экстремального нагона 4 декабря 1971 г. (2,1 м) в Курильске пришелся на отлив. Высокий прилив наблюдался на 6 часов раньше.

Рис.45. Инструментальные записи Чилийского цунами 16 сентября 2015 г. в бухтах о. Шикотан (автономные станции ИМГиГ ДВО РАН).

Рис.46. Моделирование Чилийских цунами 1.04.2014 и 16.09.2015 г. Идентичный характер цунами, подходящих к тихоокеанскому побережью России.

Рис.47. Схема расположения измерителей температуры (черные квадраты) в прибрежной зоне о. Сахалин (слева). Графики вариаций температуры воды на станциях Взморье, Остромысовка и Изменчивое (в °С) и среднесуточные вектора направления и скорости ветра ГМС Макаров по инструментальным измерениям 2007 г (справа).

Рис. 48. Расположение профилей, где найдены осадки наиболее сильных цунами, произошедших в последнее тысячелетие с усредненной оценкой минимальных параметров палеоцунами (вертикальный заплеск, м/горизонтальный заплеск, км). А – XVII век; Б – XIII век; В – около 1 тыс. л.н. Для островов приведены отдельных высотные отметки, м.

Рис. 49. Разрезы торфяников с прослоями цунамигенных осадков на побережье бух. Рудня, тихоокеанское побережье о. Зеленый.

1 – песок, 2 – алевритистый песок, 3 – глина, 4 – щебень, 5 – торф, 6 – торфянистый алеврит, 7 – древесина, 8 – вулканический пепел, 9 – цунамигенный песок.

Рис. 50. Бухты, где проводился поиск осадков цунами 1983 и 1993 гг.

Рис.51. Схема расположения автономных буйковых станций (АБС, отмечены ромбами) в заливе Анива в 2003 г. Точками отмечены гидрологические станции стандартных океанологических разрезов.

Рис.52. Проекции измеренных векторов скорости течений на параллель (U, см/с) и на меридиан (V) в поверхностном (слой 10), промежуточном (слой 5) и придонном (слой 1) слоях.

Рисунок 53. Спектры колебаний уровня моря при метеоцунами и спокойных условиях (естественный фон).

Рис. 54. Диаграммы рассеяния валового содержания Al, Ni, Cr, Cu, As, Mo в слоевищах *P. squarrosa* (на графиках: по оси абсцисс – расстояние до автодороги, м; по оси ординат – значения валового содержания, мг/кг).

Рис. 55 Dactylospora anziae. А – апотеций (слева, LE 309624; справа, голотип); В – апотеций, поперечный срез (LE 309624); С – верхняя часть экципула, поперечный срез (LE 309624); D – эпигимений, парафизы и сумки (LE 309624); Е – сумки; F – нижняя часть экципула (LE 309624); G – сумки, в растворе КОН (LE 309624, справа). Масштаб: A = 200 μ m; B = 50 μ m, C–G = 10 μ m.

Рис. 56. Распространение Physcia alnophila на Дальнем Востоке России.

В процессе исследования был изучен гербарный материал, собранный на территории Российского Дальнего Востока и хранящийся в гербариях России (LE, LECB, VLA, VBGI, MAG, SAK) и Японии (TNS) (Галанина И. А., **Ежкин А. К.,** Яковченко Л. С., Гимельбрант Д. Е., Желудева Е. В., & Скирина И. Ф. (2017) *Physcia alnophila* (Vain.) Loht. et al. на Дальнем Востоке России // Turczaninowia, 20(1), 99-106).

Рис. 57. Карта распространения *Heterodermia incana* в мире.

Рис. 58. А – карта изохрон перехода среднесуточной температуры поверхности грунта на минусовые значения; Б – карта продолжительности периода максимальной опасности разрушения берегового уступа.

Рис. 59. Аккумулятивная морфолитосистема в Амурском лимане.

Рис. 60. Миякея цельнолистная – редкий эндемичный вид, произрастающий в заказнике «Восточный» (о-в Сахалин). Фото Р. Сабирова

Рис. 61. Облесенность в 100-метровой полосе (FC_{total}) и содержание частиц в донных отложениях (1 - <1 мм, 2 - 1–0,5 мм, 3 - 0,5–0,25 мм).

Рис. 62. Участки аномального строения стеблей Spirea beauverdiana разного возраста в условиях сольфатарного поля кальдеры Головнина, остров Кунашир:

1 – однолетний стебель; 2 – трехлетний стебель; 3 – 5-летний стебель; 4 – 6летний стебель; 5 – 8-летний стебель; 6 – 12-летний стебель; 7 – 15-летний стебель; 8 – 26-летний стебель; ППк – паренхима первичной коры; АФ – аномальная феллема; СкГ – склереидная группа; Фл – флоэма; ГК – годичный прирост ксилемы; ПФл – проводящая флоэма; НФл – непроводящая флоэма; Ф – феллема; АФЛ – аномальный флоэмный луч; АКЛ – аномальный ксилемный луч; сплошной линией обозначен камбий, пунктирной – феллоген.

Рис. 63. Временные разрезы НСП 124, 125 с геологической интерпретацией и положением их фрагментов (рисунок 64а-и). Вертикальный масштаб в секундах двойного пробега здесь и на рисунке 64а-и. Отмечены пикеты судового времени и пройденное расстояние в морских милях из каталога координат по 5 рейсу НИС «Проф. Гагаринский»-1989 здесь и на рисунок 64а-и $A\Phi$ – акустический фундамент, **ВБ** – вершинный бенч, **ЭР** – эрозионное русло, **АР** – абиссальное русло с намывными дамбами, **П** – предполагаемая гранитная протрузия; **влк.** – палеовулкан; пунктиры со стрелками – предполагаемые разломы и смещения по ним здесь и на рисунке 64а-и.

Рис.64 Фрагменты (а-и) временных разрезов 124, 125: Т – финальные траппы, ГО – газовое окно, НД – намывная дамба (прирусловой вал); Л – линза прозрачных карбонатов (подводная долина). Стратиграфия видимого разреза по аналогии с котловиной Тускарора.

Рис.65. Схема геологического строения (по материалам В.В. Голозубова и др., упрощено) и направлений осей локальных тектонических напряжений Южного Сахалина. 1-4 - комплексы разновозрастных образований: 1 – альбские и позднемеловые терригенные, частью туфово-терригенные; 2 - палеоцен-миоценовые терригенные, реже - вулканогенные; 3 - миоценчетвертичные терригенные; 4 - меловые и палеоцен-эоценовые аккреционные комплексы Сусунайского, Тонино-Анивского террейнов; 5 - разломы. На стереограммах показаны оси главных нормальных (σ_1 - минимальных, σ_2 - промежуточных, σ_3 - максимальных сжимающих) напряжений и плоскости действия максимальных касательных напряжений с векторами перемещения отсутствующего крыла (сетка Вульфа, верхняя полусфера).

Рис. 66. Нормированный на один год кумулятивный график повторяемости Гутенберга-Рихтера, построенный для землетрясений в районе полигона закачки жидкости.

- 1 историческая сейсмичность (1964-2006 гг.);
- 2 современная сейсмичность (2006-2016 гг.).

Рис. 67. Схема Курильской геодинамической GPS/ГЛОНАСС сети.